

Chettinad College of Engineering \& Technology
 Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai.

Department of Mechanical Engineering

MA8452 - Statistics and Numerical Methods
Unit 2 - MCQ Bank

1. Newton- Gregory Forward interpolation formula can be used \qquad
A. only for equally spaced intervals
B. only for unequally spaced intervals
C. for both equally and unequally spaced intervals
D. for unequally intervals

Answer: (A)
2. Find n for the following data if $f(0.2)$ is asked

x	0	1	2	3	4	5	6
$\mathrm{f}(\mathrm{x})$	176	185	194	203	212	220	229

A. 0.4
B. 0.2
C. 1
D. 0.1

Answer : (B)
3. Find n if $\mathrm{x}_{0}=0.75825, \mathrm{x}=0.759$ and $\mathrm{h}=0.00005$
A. 1.5
B. 15
C. 2.5
D. 25

Answer : (B)
4. Find x if $\mathrm{x}_{0}=0.6, \mathrm{n}=2.6$ and $\mathrm{h}=0.2$.
A. 12
B. 1.2
C. 1.12
D. 1.22

Answer : (C)
5. Interpolation is helpful in estimating
A. The missing values
B. An intermediate value for a given argument
C. The argument for a given entry
D. All of the above

Answer : (D)
6. Given $n+1$ data pairs, a unique polynomial of degree \qquad passes through the $\mathrm{n}+1$ data points
A. $n+1$
B. n
C. n or less
D. $\mathrm{n}+1$ or less

Answer :(C).
7. The condition to apply Simpson's $\frac{1}{3}$ rule for integration is
A. The interval of integration must be divided into an even number of sub-intervals
B. The interval of integration must be divided into an odd number of sub-intervals
C. The interval of integration must be divided into a 3-multiple of sub-intervals

Answer :(A).
8. What is the order of error in Trapezoidal rule?
A. h
B. h^{2}
C. h^{3}
D. h^{4}

Answer :(B).
9. What is the order of error in Simpson's $1 / 3$ rule?
A. h
B. h^{2}
C. h^{3}
D. h^{4}

Answer :(D).
10. What is the error in Simpson's $\frac{\mathbf{1}}{\mathbf{3}}$ rule (or) Simpson's rule?
A. $E=-\frac{(b-a)}{12} h^{2} y^{\prime \prime}(x)$
B. $E=-\frac{3(b-a)}{80} h^{5} y^{v}(x)$
C. $E=-\frac{(b-a)}{180} h^{4} y^{i v}(x)$

Answer :(C)

11. Which method can be used for both equal and unequal intervals?

A. Lagrange's method
B. Newton's divided difference
C. Both A and B
D. Neither A nor B

Answer :(C)

12. Newton's backward interpolation formula is used when

A. interpolation is required near the beginning of the table
B. interpolation is required near the end of the table
C. interpolation is required near the middle of the table

Answer :(B)
13. $\Delta \log x=$
A. $\log \left(\frac{x+h}{x}\right)$
B. $\log \left(\frac{x}{x+h}\right)$
C. $\log \left(\frac{x-h}{x}\right)$
D. $\log \left(\frac{x}{x-h}\right)$

Answer :(A)

14. Newton's forward difference formula is

A. $\mathrm{y}(\mathrm{x})=y_{n}+\frac{u}{1!} \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots$
B. $\mathrm{y}(\mathrm{x})=y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots$
C. $\mathrm{y}(\mathrm{x})=\frac{1}{h}\left[y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots ..\right]$
D. none of these

Answer: (B)
15. What is the error in Simpson's $\frac{3}{8}$ rule?
A. $E=-\frac{3(b-a)}{80} h^{5} y^{i v}(x)$
B. $E=\frac{3(b-a)}{80} h^{5} y^{i v}(x)$
C. $E=-\frac{3(b-a)}{50} h^{5} y^{i v}(x)$
D. $E=-\frac{3(b-a)}{50} h^{4} y^{i v}(x)$

Answer: (A)
16. Trapezoidal formula is also known as \qquad
A. Simpson's rule
B. Co-ordinate method
C. Prismoidal method
D. Average end area method

Answer: (D)
17. The value obtained from Simpson's rule depends on the nature of the curve.
A. True
B. False

Answer: (A)
18. Which of the following shapes is generally preferred in case of application of Simpson's rule?
A. Square
B. Triangle
C. Trapezoid
D. Rectangle

Answer: (C)
19. The below mentioned formula is suitable to find out
$\int_{x_{0}}^{x_{n}} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots\right)+2\left(y_{3}+y_{6}+y_{9}+\cdots\right)\right]$
A. Simpson's $1 / 3$ rule
B. Simpson's $\mathbf{3 / 8}$ rule
C. Trapezoidal rule
D. Newton Cote's formula

Answer: (B)
20. The below mentioned formula is suitable to find out
$\int_{x_{0}}^{x_{n}} y d x=n h\left[y_{0}+\frac{n}{2} \Delta y_{0}+\frac{n(2 n-3)}{12} \Delta^{2} y_{0}+\frac{n(n-2)^{2}}{24} \Delta^{3} y_{0}+\cdots\right]$
A. Simpson's $1 / 3$ rule
B. Simpson's $3 / 8$ rule
C. Trapezoidal rule

D. Newton Cote's formula

Answer: (D)

21. The below mentioned formula is suitable to find out

$$
\int_{x_{0}}^{x_{n}} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\cdots\right)+2\left(y_{2}+y_{4}+y_{6}+\cdots\right)\right] \text { is the formula of }
$$

A. Simpson's $1 / 3$ rule
B. Simpson's $3 / 8$ rule
C. Trapezoidal rule
D. Newton Cote's formula

Answer: (A)
22. Which formula is called closed formula?

A. Simpson's rule

B. Trapezoidal

Answer: (A)
23. In Simpson's $\frac{\mathbf{3}}{\mathbf{3}}$ rule for integration the interval of integration must be divided into how many sub intervals?
A. 2
B. 3
C. 4
D. 5

Answer: (B)
24. The Newton's backward difference formula for first derivative at the end point $\mathrm{x}=\mathrm{xn}$ is
A. $y_{n}+\frac{u}{1!} \nabla y_{n}+\frac{u(u+1)}{2!} \nabla^{2} y_{n}+\frac{u(u+1)(u+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots$
B. $y_{0}+\frac{u}{1!} \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots$
C. $\frac{1}{h}\left[\nabla y_{0}+\frac{1}{2} \nabla^{2} y_{0}+\frac{1}{3} \nabla^{3} y_{0}+\ldots ..\right]$

Answer : (C)
25. Newton's divided difference formula is used for unequal intervals.
A.True
B. False

Answer: (A)

